24th ISCE Annual Meeting

Pennsylvania, USA (August 21, 2008)

Identification of C_{21} Type II sex pheromone components and novel C_{20} and C_{22} trienyl biosynthetic precursors from a wasp moth, *Syntomoides imaon* (Arctiidae: Syntominae)

Tetsu ANDO et al.

Graduate School of BASE, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan E-mail: antetsu@cc.tuat.ac.jp

Arctiid species and pheromone study

In Syntominae, Type II pheromones (C21 triene and 9,10-epoxide) have been identified from two tropical species, *Empyreuma mucro* and *Syntomeida epilais* (no field data) (Descoins et al., 1989).

Insects used in this study

Syntomoides imaon Cramer (a wasp mimic species) Distributed in Southeast Asia, such as India and Taiwan Found only in the Yonaguni-jima Island in Japan Reared on a semisynthetic diet (16L-8D, 25°C)

GC-EAD and **GC-MS**

The pheromone gland extract of *S. imaon* females was analyzed by GC-EAD and GC-MS equipped with a DB-23 column.

I : II : III : IV = 32:67:0.6:0.7

Chemical reactions with tetraene

Field tests			Drdinal was <i>Amata fo</i> Z3,Z6,Z & othe (with	p moth in Japan <i>rtunei</i> 29-21:H r components out tetraene)	
	Syntomoides ima	aon			
and the		Triene	Tetraene	Total males	
	and a second sec	0.5 mg	1.0 mg	31	
		1.0	0	0	
		0	1.0	0	
	Z3.Z6.Z9-21:H	0	0	0	
V	& 1,Z3,Z6,Z9-21:	H From	28 June to	5 July, 2007	
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Future works: the optical mixing ratio, roles of minor C20				
2	compounds and visual cues, and etc.				
Identification of tetraenes					
C21	C21		C19		
Epirrita autumnata (Geometridae)) Ope	Operophtera brumata		
Arctia villica (Arctiidae)		0. b	O. bruceata (Geometridae)		
Utetheisa ornatrix (Arctiidae)					

Biosynthesis of Type II pheromones

Analysis of fatty acids

Abdominal integument with oenocytes and peripheral fat bodies

Extraction, basic methanolysis, methylation with CH_2N_2

Mixture of fatty acid methyl esters (FAMEs)

HPLC separation (ODS column)

GC-MS biosynthetic precursors

Fractions including a long-chain fatty acid ester

Ion fragments lower than m/z 150 in the spectra of the 20:3 and 22:3 esters were identical to those of the ester of linolenic acid (18:3), indicating the same trienyl structure.

Relative contents; 16:0 (0.3 mg/female, 100%), 20:3 (0.08%), 22:3 (0.03%)

Unsaturated positions of C20 trienoate

Summery

Female wasp moths produce Type II pheromones, a mixture of C21 triene and tetraene to attract males.

Fatty acid methyl esters (FAMEs) derived from lipids were fractionated by HPLC. GC-MS analysis revealed novel C20 and C22 trienoates, longer-chain analogs of linolenate.

In the another experiment with the geometrid moth, which produces C19 pheromone components, only C20 trienoate was detected.

Different systems of the chain elongation might play an important role in developing species-specific communication systems mediated with polyunsaturated hydrocarbons and derivatives, components of Type II lepidopteran sex pheromones.

Recent related studies

1) Biosynthesis of tetraene in Utetheisa ornatrix (Arctiidae: Arctiinae)

Choi et al., 2007. JCE, 33: 1336

"D₄-Z3,Z6,Z9-21:H was injected into pupae. No label was incorporated into 1,Z3,Z6,Z9-21:H, indicating that the terminal double bond is introduced earlier in the biosynthetic pathway."

Tetraenyl acid intermediate was not detected in our study.

→ Is the step of desaturation linked effectively with decarboxylation?

2) Biosynthesis of even numbered triene in *Erannis bajaria* (Geometridae) Goller et al., 2007. *JCE*, **33**: 1505

"D₄-Z3,Z6,Z9-18:H was detected after treatment of D₄-trienyl C19 or C20 acid. The result indicates that the C20 acid is shorted by α -oxidation to C19 acid, which can be reduced to an aldehyde and decarbonylated or decarboxylated to the pheromone component."

Biosynthesis of odd numbered triene has not been experimentally confirmed. → Where is decarboxylation carried out? Acknowledgments

Co-workers Dr. M. Muramatsu The Ayamihabi Dr. H. Naka

Dr.Y. Kondo

Dr. M. Yamamoto

Museum, Okinawa, Japan

search Hall, Osaka, Japan

Matsuoka

Adach

R. Kiyota

A. Yasmine

A. Islam

amakawa

Chemical Ecology Laboratory of TUAT

Glfu University-Gifu, Japa