23rd ISCE Annual Meeting Symposium on Insect Semiochemicals I *Analysis, Structures, Synthesis,* Jena, Germany (July 23, 2007)

GC-MS and LC-MS analyses for unraveling the diversity of lepidopteran communication systems

Tetsu ANDO

Graduate School of BASE, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan E-mail: antetsu@cc.tuat.ac.jp

Lepidopteran sex pheromones

Produced by ♀ to attract ♂ Main factor for reproductive isolation → Species specific

Pheromones of 580 species have been reported.

Lepidoptera: ca. 150,000 species Variety of chemical structures Blending of multiple components

Small insects \implies Low content Identification by GC-EAD GC-MS HPLC and LC-MS ?

Type I sex pheromones

Pest insects in Japan

i) Monoenyl compounds

Diamondback moth

Z11-16:OAc Z11-16:Ald Z11-16:OH

ii) Dienyl compounds

Pine caterpillar

Z5,E7-12:OH

Cherry treeborer OAc Z3,Z13-18:OAc CAC Cherry treeborer OAc E3,Z13-18:OAc

iii) Trienyl compounds

Mulberry pyralid

E10,E12,Z14-16:OAc

Double-bond positions of dienes and trienes

(C_{13} and C_{15} chain compounds are not included.)

Determination of double-bond positions

(A) MTAD (4-methyl-1.2.4-triazoline-3.5-dione) derivative

If conjugated dienes specifically show characteristic fragment ions on the direct GC-MS analysis, derivatization is not necessary.

Mass spectra of conjugated dienes (C₁₂ alcohols)

In the case of the a terminal conjugated diene, identification of a natural pheromone can be accomplished without derivatization.

Diagnostic ions of conjugated dienes

Identification of dienyl pheromones

Identification of ω 1, ω 3-dienes

OH

[Limacodidae] Nettle moths

Parasa lepida

Z7,9-10:OH

Identification of ω1,ω3-dienes

[Limacodidae]

Parasa lepida

Pheromones of Sesiidae species								
D	o any females	produce	E13 compounds ?			- Carlos	1	
1	`			Z2 compounds ?			199	
F	>		Z3 or E	3 aldehydes	;?	100.0	1	
	Double bonds			Number	Number of species			
	Position	Configur	ration	OH	OAc	Ald		
	3,13-Diene	Z3,Z1	3	4	3	0		
		E3,Z13 Z3,E13		3	3	0		
				0	1?	0		
		E3,E1	3	0	0	0		
	0.40 D	70 74	0	0	0	0		
	2,13-Diene Z2,Z		3	0	0	0		
		E2,Z1	3	0	5	3	_	
Macroscelesia spp.				-		Yo		
	~~~~~	$\sim \sim \sim \sim$	<u>, М., </u>		7 7	MP I		
	E2,Z13-18:Ald			1 AND				
				M. japona	M. I	onaipes	)	

## GC analysis of 3,13- and 2,13-dienals





- Peaks without any isomerization •
- Isomerized to E2,Z13-18:Ald  $\star$
- Isomerized to E2,E13-18:Ald  $\star$

#### LC and LC-MS analyses of the dienals



## Type II sex pheromones

#### (A) First Identification

Hill *et al.*, (1981) *J. Chem. Ecol.*, **7**: 655 saltmarsh caterpillar moth (*Estigmene acrea*: Arctiidae)

> Z3,Z6,epo9-21:H + Z9,Z12,Z15-18:Ald + Z9,Z12-18:Ald (27:6:1)



# (B) Identification in Japan

Biston robustum

(Geometridae)





epo6,Z9-19:H Z3,epo6,Z9-19:H Milionia basalis (Geometridae) epo3,Z6,Z9-19:H



Penina nuda (Lymantriidae)





# **Diagnostic ions of GC-MS analysis (EI)**



# Analysis by LC-TOF MS (ESI)

Column: ODS (2.1 mm X 15 cm) Eluent: 20-5%  $H_2O$  in MeOH Spray tip potential: +3,400 V Nozzle potential: +120 V









## LC-TOF MS (ESI) analysis of pheromones (1)

Column: ODS (2.1 mm X 15 cm) Eluent: 20-5% H₂O in MeOH Spray tip potential: +3,400 V Nozzle potential: +120 V





## LC-TOF MS (ESI) analysis of pheromones ②

Column: Chiralcel OJ-R Eluent: 10% H₂O in MeOH Spray tip potential: +3,400 V Nozzle potential: +120 V





# Conclusion

EI-Mass spectra of Type I pheromones (conjugated dienes) and Type II pheromones (polyunsaturated hydrocarbons and their epoxy derivatives) showed diagnostic fragment ions for the structure determination.

LC and LC-MS are useful tools for unstable and inapplicable components on GC analysis. Stereochemistry of epoxy pheromones can be determined by LC-MS with a chiral column.

The diversity of lepidopteran communication systems will be understood in detail using these elegant(?) and smart(?) techniques.

Identification of Drs. F. Komai, dentifica

-Identification

Acknowledgments

Co-workers

X.-R. Qin

Dr. Witjaksono

a intra intre

Dr. S. Inomat

<u>. A. Ono</u>

Dr. L. V. Vang

Dr. H. Yamazawa

Drs. H. Naka, Y. Arita and K. Suchida e pheromones from Sesiidae species o and H. Ishitani he pheromones from Olethreutinae species Drs. K. Ohtani, G.-Q. Pu and K. I. Karasawa e pheromone from Geometridae species

Nishida

akazawa

Matsuoka

Numakura

M. Sugie

. A. Islam

Chemical Ecology Laboratory of