22nd, ISCE Annual Meeting Barcelona July 18, 2006

Synthesis and Characterization of 3,13and 2,13-Octadecadienyl Compounds for Identification of the Sex Pheromone Secreted by Clearwing Moths

T. Ando,^{*} H. Naka, M. Yamamoto, T. Nakazawa, M. Sugie, K. Matsuoka and Y. Arita

*Graduate School of BASE, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan E-mail: antetsu@cc.tuat.ac.jp

Introduction (1)

Studies of sex pheromones in Sesiidae

Diurnal species with wasp-mimic clear wings and body

1) First identification

Synanthedon pictipes E3,Z13-18:OAc

Tumlinson et al., Science, 185, 614-616 (1974)

exitiosa Z3,Z13-18:OAc

2) In Japan

Synanthedon hector

tenuis

E3,Z13-18:OAc + Z3,Z13-18:OAc (1:1)

Yaginuma et al., Appl. Entomol. Zool., 11, 266-268 (1976)

Attractant and mating disruptant (ca. 4,000 ha plum orchard)

Pheromone components of Sesiidae

Identified from 15 species as an essential component for the male attraction. Some species produce multi components.

			Numbe	Number of species			
			OH	OAc		Ald	
3,13-Diene	Z3,Z13		4	3		0	
	E3,Z13		3	3		0	
	Z3,E13		0	1		0	
	E3,E13		0	0		0	
2,13-Diene	Z2,Z13		0	0		0	
	E2,Z13		0	5		1	
13-Monoene	Z13		0	1		0	
Oo the females produce E13 compounds? Z2 compounds							
aldehydes unsaturated at the 3-position							

?

?

Introduction (3)

Japanese sesiid species and pheromone studies in the world

Sub-family Tribe	Genus	Japanese species	Sp. reported * phero. + attr.
Tintiinae	Trichocerata	3 sp.	0 + 0 sp.
	Paranthrenopsis	1 sp.	0 + 0 sp.
	, Pennisetia	3 sp.	0 + 3 sp.
Sesiinae	Milisipepsis	1 sp.	0 + 0 sp.
Sesiini	Sesia	1 sp.	1 + 3 sp.
	Scasiba	3 sp.	0 + 0 sp.
Melittini	Melittia	4 sp.	2 + 0 sp.
	Macroscelesia	2 sp.	0 + 0 sp.
Paranthrenini	Nokona	5 sp.	0 + 0 sp.
	Paranthrene	1 sp.	3 + 4 sp.
Cissuvorini <i>Toleria</i>		2 sp.	0 + 0 sp.
Synanthedonini	Synanthedon	12 sp.	4 + 35 sp.
-	Scalarignathia	1 sp.	0 + 0 sp.
Osminiini	-		

* Pheromones from 15 species and attractants from 87 species have been reported.

Synthesis of all geometrical isomers

3) OH → Ald

GC analysis of alcohols and acetates

DB-23 (0.25 mm X 30 m) 100 °C (2 min) → 175 °C (20 °C/min) → 220 °C (6 °C/min)

Mass spectra of alcohols and acetates

1) Alcohols

2) Acetates

3,13-Dienes and 2,13-dienes showed almost the same spectra.

3) DMDS derivatives

Mono-DMDS adduct at the 13-position OK

Di-DMDS adduct at the 3,13- or 2,13-positions ?

Vincenti et al., Ann. Chem., 59, 694-699 (1987)

Sex pheromone of Nokona pernix

Distribution: Japan, China Host plant: *Paederia scandens* (Rubiaceae)

(C) Field attraction by synthetic rules

(mg/septum) Lure E3,Z13 Z3,Z13 males/trap (A) GC-EAD analysis 1.00 0 0.01 0.99 EAD 8.7 ± 6.5 0.05 0.95 а 20.7 ±13.4 a 0.90 0.10 7.7 ± 3.8 Comp. A 0.30 0.70 а 1.3 ± 1.5 0.50 0.50 b Comp. B 0 0 0 FID June 15 – July 12, 2004 0.0 10.0 Rt (min) 5.0 (B) GC-MS analysis Comp. A E3,Z13-18:OH Comp. B Z3,Z13-18:OH

GC analysis of aldehydes

Z2-Configuration were completely changed to E2-configuration.

Sex pheromone of *Macroscelesia* spp.

M. Japona (Hampson)
Distribution: Japan
Host plant: *Gynostemma pentaphyllum* (in copse)

GC-EAD Comp. I Comp. I EAD Ratio 1:10 FID 4 10 12 Rt (min)

Comp. I E2,Z13-18:OH

GC-MS → OH, 2,13-diene, EZ-isomer

Comp. II E2,Z13-18:Ald

 $GC-MS \longrightarrow Ald, 2, 13-diene? EZ-isomer?$

NaBH₄ reduction \longrightarrow E2,Z13-18:OH

HPLC, LC-MS analyses

Field evaluation of *Macroscelesia* pheromones

(A) Field attraction in a cospe (June 17 - July 16,2004)

(B) Field attraction in a river side (August 12-23, 2004)

E2	2,Z13-18	3 (mg/septu	um) Total males		
	OH	Ald	Attracted	Touched	/ /
	1.00	0	6.3 ± 1.7 b,c	3.0 ± 1.8 b,c	M. longipes
	1.00	0.05	13.8 ± 3.3 a	9.8 ± 2.2 a	
	1.00	0.10	13.0 ± 6.1 a,b	5.3 ± 2.9 b	$\overline{\mathbf{h}}$
	1.00	0.30	13.3 <u>+</u> 2.5 a	5.5 ± 1.3 b	20:1
	0	0	0	0	

Co-workers

Dr. Hideshi NAKA

Department of Biological Safety, National Institute for Agro-Environmental Sciences (NIAES), Tsukuba, Ibaraki 305-8604, Japan Present address:

JT Biohistory Research Hall

Prof. Yutaka ARITA

Faculty of Agriculture, Meijo University Tempaku-ku, Nagoya 468-8502, Japan

Book written by Prof. Arita

